聚式振动流化床干燥机中几种常见的不正常现象
1、沟流(见图1-5) 在流体通入 振动流化床干燥机的固定床层时,由于各种原因使流体在床层中分布不均匀,在振动流化床干燥机床层的局部地方产生了短路,使相当多的流体通过短路流过床层,即使通过床层的气流速度大于临界速度Vmf,而床层却不流化。必需比临界速度大得很多的流速才能使料层“开锁”,一旦这点发生后,如图1-6的K点,则振动流化床干燥机的床层沸腾流化,床层压力突然下降,即由K点降到C1点。此后压力损失随着流速的增加,可能出现回升,但达不到理论的压力损失值。
产生沟流的原因大致有以下几个方面:1.振动流化床干燥机的料层颗粒度分布不均匀,细小颗粒过多,且干燥介质的流速较低。2.物料潮湿易结块,在床层中料层厚薄不均匀。易在床层薄、结块少的局部产生沟流。3.振动流化床干燥机气体分布板设计不佳,在孔板上的开孔数较少,气体分布不均匀。在振动流化床干燥机中若产生沟流,会使干燥介质与被干燥的物料接触不良,干燥效率降低。消除沟流现象,一般须采用较大的流速,合理设计分布板,物料不要太湿,必要时可在床层内加设搅拌装置。在工艺操作上,可以先送气后加物料。
2.腾涌(见图1-7)在振动流化床干燥机内固体颗粒大小分布不均匀,气体通过分布板不均匀,流化床的高度与直径比值较大等因素,会使床层内的气泡汇合长大,直至气泡直径大到接近于床层内径时,由于振动流化床干燥机气速较大,固体颗粒在床内就会形成活塞状向上运动,当气泡在密相界面上破裂时,颗粒会被向上抛出很高,小颗粒被气流所夹带,较大的颗粒然后纷纷落下。如此往复循环,就会使固体颗粒与干燥介质流体接触不良,干燥效率降低。产生的这种现象称为腾涌。
由于腾涌会使振动流化床干燥机床层受到较大的冲击,故易损坏床内构件。同时在流化床干燥中,腾涌往往会使被干燥的固体颗粒物料加剧磨损,大量的细粉被气流带出。为避免腾涌现象的产生,可把振动流化床干燥机的高度和直径适当地加高和加大,并使H/L<1。必要时可在床层内加设内部构件(如挡板或挡网等),破坏腾涌的产生。流化质量在气-固两相的振动流化床干燥机中,流化质量的好坏,可用以下几个方面进行鉴别(见图1-8 ):
1.床层压力损失波动一般在正负百分之三以内。若压力损失波动超过正负10%,则是不正常流
化。
2.床层温度(轴向、径向)分布均匀,温差一般在2摄氏度以内。
3.用听音棒沿热电偶保护管听床层内流体及固体颗粒流动的声音,或用仪器测定起泡频率,频率高者说明气泡小流化均匀。当流化很差时,设备和支架会出现明显的振动。
在通常情况下,振动流化床干燥机中流体空床流速超过临界流速不太大时,床层内就可产生较为剧烈的搅动,达到气-固两相良好的接触。故一般不取太大的流化速度。此外,采取较宽的固体颗粒粒度范围和较低的床层,这对于改善流化质量也有一定的成效。 冷冻干燥机使用前的检查工作 我们在购进新设备时,往往不能立即开封使用,因为设备在出厂时,上面一般都沾有太多的机器油污,在使用时必须要经过一定的处理,尤其是对于食品,医药类的设备,其卫生要必须达到一定的标准,才能使用。下 闪蒸干燥机底部设置倒锥形体结构,使干燥气体流通截面自下而上逐渐扩大,底部气流相对较大,上部气流相对较小,从而保证下部的大颗粒处于流化状态的同时,上部的小颗粒也处于流化状态,并使热风沿椎体部旋转,提高底部风速,缩小了搅拌轴悬臂部分的长度,增加了运转的安全可靠性;可使轴承放在机外,有效防止轴承沸腾干燥又称流化床干燥,它利用热空气流使湿颗粒悬浮,流态化的沸腾使物料进行热交换,通过热空气把蒸发的水分或有机溶媒带走,其采用热风流动对物料进行气—固二相悬浮接触的质热传递方式,达到湿颗粒干燥的目的。流化床干燥技术涉及传热和传质两个相互过程。在对流干燥过程中,热空气通过与湿物料接触将热能沸腾干燥机的种类有很多种,比较常见的有:卧式沸腾干燥机和立式沸腾干燥机。这两种分类在一些生产中是经常会使用到的。卧式沸腾干燥机的结构比较简单,维修也很方便。经常被使用在:颗粒性物料、含湿量很高的物料的干燥过程中。卧式沸腾干燥机如此广泛的被应用到,那么你知道它的外观与制作材料上有什么要求吗?今天我们就闪蒸干燥机是流化技术、旋流技术、喷动技术及对流传热技术的优化组合,大大简化了生产工艺流程,节省了设备投资和运转费用。 热空气切线进入干燥器底部,在搅拌器带动下形成强有力的旋转风场。膏状物料由螺旋加料器进入干燥器内,在高速旋转搅拌桨的强烈作用下,物料受撞击、
|